R16

Reg. No:										
----------	--	--	--	--	--	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations August-2021 ENGINEERING MATHEMATICS-III

(Common to all)

Time: 3 hours Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a If f(z) = u + iv is an analytic function of z and if $u v = e^x(\cos y \sin y)$, then find f(z) in terms of z.
 - b Evaluate the integral $\int_C (y-x-3x^2i)dz$ where C consists of line segments from z=0 to z=i and the other from z=i to z=i+1.

OR

- 2 a Evaluate $\int_{0}^{1+3i} (x^2 iy) dz$ along the path $y = x^2$.
 - **b** Evaluate the integral $\int_C \frac{\cos z \sin z}{(z+i)^3} dz$ where C: |Z| = 2 using Cauchy's integral.

UNIT-II

- a Determine the poles of the function $f(z) = \frac{z^2 + 1}{z^2 2z}$ and hence residues at each pole. 6M
 - b Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax \ dx}{x^{2+1}}$, a > 0.

OR

- 4 a Find the bilinear transformation which maps the points $(\infty, i, 0)$ into the 5M points $(0, i, \infty)$.
 - b Use residue theorem to evaluate the integral $\int_{0}^{\pi} \frac{\cos 2\theta \ d\theta}{1 + 2a\cos 2\theta + a^2}$, $a^2 < 1$.

5 a Find a real root of the equation $x^3 - 7x + 3 = 0$ using Newton –Raphson method 6M with an initial approximation $x_0 = 3$.

b Use Newton's Backward interpolation formula to find f(38) given f(25) = 0.2707, **6M** f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794

OR

6 a Find the solution of the equation $x^3 - 2x - 3 = 0$ on the interval [0, 2] using 6M

- 6 a Find the solution of the equation $x^3 2x 3 = 0$ on the interval [0, 2] using 6M Regula-falsi position method. Perform four iterations.
 - b Using Lagrange's interpolation fit a polynomial P(x) of degree at most 2 6M such P(1) = 1, P(3) = 27, P(4) = 64. Hence, use it to estimate P(2).

UNIT-IV

Fit the curve of the form $y = ab^x$ to the following data

nivi

X	1	2	3	4
У	7	10	15	25

Approximate the integral $\int_{0}^{2} \sin x \, dx$, using Simpson's $\frac{3}{8}$ th rule with $h = \frac{\pi}{12}$.

6M

a Fit a second degree polynomial to the following data by the method of least squares. 8

6M

X	0	3	5	7
y	1	10	27	50

b Evaluate the integral $\int_{0}^{1} e^{-x^2} dx$, using Simpson's $\frac{1}{3}$ rule with h = 0.2.

6M

6M Given that $\frac{dy}{dx} = y - x^2$, y(0) = 1, use Picard's method to find the value of y(0.1)and y(0.2), correct to four decimal places.

6M

Solve the initial value problem $\frac{dy}{dx} = -2xy^2$, y(0) = 1 with h = 0.2 on the interval [0, 0.2] using fourth order Runge-Kutta method.

Given the differential equation $\frac{dy}{dx} = x^2 - y^2$, y(0) = 1, determine the value of 10 **6M** y(0.2) using Taylor's series method.

If the initial value problem is $\frac{dy}{dx} = \frac{2y}{x}$, y(1) = 2, then approximate the value of **6M** y(2) using Euler's method.